

ERRATA-CORRIGE TABLE

Reference	Errata	Corrigé
Fig. 1	L1	L2
Fig. 1	L2	L1
Eqn. (3)	$\hat{Y}_{pq}(z) = \frac{\sum_{r=0}^M c_r^{pq} z^{-r}}{1 + \sum_{r=0}^M d_r z^{-r}}$	$\hat{Y}_{pq}(z) = \frac{\sum_{r=0}^M \frac{c_r^{pq}}{d_0} z^{-r}}{1 + \sum_{r=1}^M \frac{d_r}{d_0} z^{-r}}$
Eqns. (4), (6), (7), (9)	c_r^{pq} for $r=0, \dots, M$	$\frac{c_r^{pq}}{d_0}$ for $r=0, \dots, M$
Eqns. (4), (6), (7), (9)	d_r for $r=1, \dots, M$	$\frac{d_r}{d_0}$ for $r=1, \dots, M$
Eqn. (18)	$I_{NL}^{n+1} = I_0 \left[\exp(V_2^{n+1} + V_2^n / 2\eta V_T) - 1 \right] + \dots$	$I_{NL}^{n+1} = I_0 \left[\exp \left(\frac{V_2^{n+1} + V_2^n}{2\eta V_T} \right) - 1 \right] + \dots$

Authors' Reply

Gianluca Emili, Federico Alimenti, Paolo Mezzanotte, Luca Roselli, and Roberto Sorrentino

We are grateful to O. El Mrabet and M. Essaaidi for pointing out some errors in the above paper.¹ There is a simpler way, however, to look at those errors, which are actually a total three.

The first error in the above paper is in Fig. 1(b), where the subscripts of the inductances $L1$ and $L2$ have been interchanged. The admittance matrix, therefore, needs not to be changed.

The second error in the above paper results from the normalization of (3), with respect to d_0 . The assumption $d_0 = 1$ highly simplifies the mathematical expressions. By mistake, the normalization has not been applied to Tables I and II in the above paper, whose elements should, therefore, be divided by d_0 . Finally, the summation at the denominator of the above equation should actually begin with $r = 1$.

To restore the original idea of normalization, as an alternative to what proposed by El Mrabet and Essaaidi, we suggest an Errata-Corrigé Table, where the coefficients d_r and c_r are quoted in Tables I and II in the above paper.

Another typographical error in the above paper has been detected and is quoted in the last row of the Errata-Corrigé Table.

It is important to stress that the results presented in the above paper are not affected at all by the above-mentioned errors, which are simply relational.

Manuscript received June 26, 2002.

The authors are with the Dipartimento di Ingegneria Elettronica e dell'Informazione, Università di Perugia, I-06125 Perugia, Italy.

Digital Object Identifier 10.1109/TMTT.2002.803453.

¹G. Emili, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, *IEEE Trans. Microwave Theory Tech.*, vol. 48, no. 12, pp. 2277–2282, Dec. 2000.

Corrections to “Accurate Circuit Model of Interdigital Capacitor and Its Application to Design of New Quasi-Lumped Miniaturized Filters With Suppression of Harmonic Resonance”

Lei Zhu and Ke Wu

In the above paper,¹ (2a)–(2c) are not exactly correct and should read as follows with reference to the network equivalence, as illustrated in Fig. 1(a) and (b):

$$\begin{aligned} \frac{J}{\sqrt{Y_1 Y_2}} &= \frac{\sin(-\phi_1/2) + \bar{B}_{11} \cos(-\phi_1/2)}{\bar{B}_{12} \sin(-\phi_2/2)} \\ &= \frac{\bar{B}_{12} \cos(-\phi_2/2)}{\bar{B}_{11} \sin(-\phi_1/2) - \cos(-\phi_1/2)} \end{aligned} \quad (1a)$$

$$\phi_1 = M_1 \pi + \tan^{-1} \left\{ \frac{2(\bar{B}_{11} + \bar{B}_{22} |\bar{B}|)}{1 + \bar{B}_{22}^2 - \bar{B}_{11}^2 - |\bar{B}|^2} \right\} \quad (1b)$$

$$\phi_2 = M_2 \pi + \tan^{-1} \left\{ \frac{2(\bar{B}_{22} + \bar{B}_{11} |\bar{B}|)}{1 + \bar{B}_{11}^2 - \bar{B}_{22}^2 - |\bar{B}|^2} \right\} \quad (1c)$$

where $\bar{B}_{11} = B_{11}/Y_1$, $\bar{B}_{22} = B_{22}/Y_2$, and $\bar{B}_{12} = B_{12}/\sqrt{Y_1 Y_2}$ and $|\bar{B}| = \sqrt{\bar{B}_{11} \bar{B}_{22} - \bar{B}_{12}^2}$, M_1 , and M_2 are the two positive integer

Manuscript received June 13, 2002.

L. Zhu is with the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (e-mail: ezhul@ntu.edu.sg).

K. Wu is with the Department of Electrical and Computer Engineering, Ecole Polytechnique de Montréal, Montréal, QC, Canada H3C 3A7.

Digital Object Identifier 10.1109/TMTT.2002.803452.

¹L. Zhu and K. Wu, *IEEE Trans. Microwave Theory Tech.*, vol. 48, no. 3, pp. 347–356, Mar. 2000.

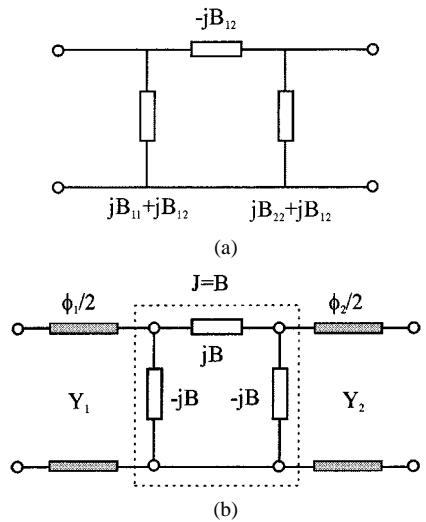


Fig. 1. Equivalence of an asymmetrical two-port lossless network.

numbers, Y_1 and Y_2 indicate the characteristic admittances of two asymmetrical feeding lines.